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SURFACEWATERDATABASE 
Robert H. Shumway 

Department of Statistics 
University of California, Davis 

Abstract 

Various studies on measured levels of pesticides in water have been completed and data from 
these studies are currently available on a surface water database maintained by the Depart- 
ment of Pesticide Regulation (DPR). W e examine portions of two databases in this report 
and suggest statistical methodology for approaching questions of importance in monitoring 
pesticide levels in water. The question of primary interest is the merging of concentrations, 
measured over time, space and sampling technique, into a coherent pesticide signal from a 
given region. This involves handling time series that are irregularly observed, due to missing 
observations or different sampling rates We consider models over time and space that lead 
to prediction limits for the pesticide signal during episodes where the concentrations may 
be exceeding regulatory standards. A recommended exploratory data analysis and modeling 
procedure is developed and applied to concentrations of various pesticides, focusing on chlor- 
pyrifos and diazinon, measured in a Dow Chemical Study on Orestimba Creek and diazinon 
and simazine in a U.S. Geological Survey study along the San Joaquin River. 

Key Words: Water quality regulation, pesticide concentrations, exploratory data analysis, 
missing data, state-space model, dynamic regression, signal extraction. 



1. Introduction: Review of Data 

The Department of Pesticide Regulation (DPR) is currently creating a large database con- 
sisting of concentrations of various pesticides in surface water. For regulatory purposes, it 
would be useful to have some standard methodological techniques for accessing this data and 
for making assertions about the levels of pesticides in a given area and to the uncertainties 
that can be attributed to these levels. 

The data used for this preliminary study are only a fraction of that currently available 
for analysis in the DPR surface water database. With the assistance of DPR personnel, two 
large files were accessed, containing measurements of pesticide levels on Orestimba Creek 
and the San Joaquin River at Vernalis, respectively. 

The first database contains measurements taken in a study by Poletika and Robb (1998) 
in the Orestimba Creek tributary of the San Joaquin River on the pesticides chlorpyrifos, 
diazinon and methidathion during the period April, 1996 to May, 1997. Ideally, there would 
be 364 daily observations during this period at three locations, the State Highway 33 bridge, 
the Crow Creek drain and River Road. Measurements were taken hourly and merged into 
a daily composite. For the River Road location, weekly grab samples were available. This 
file contained roughly 3000 lines with location, sampling date, extraction and analysis dates, 
chemical code, detection limit, and sampling method by code and type. The observations 
are intermingled by date and there are many below the published detection limits. There 
were also dates with no available observations. Figure 1 shows a time plot for the pesticides 
chlorpyrifos and diazinon at the three locations, where the weekly grab samples also available 
from the River Road location. A complicating feature of this kind of data is the tendency 
for detections to involve very large oscillations of fairly short duration. This complicates 
the treatment of the data over long time periods and we concentrateon the local behavior of 
high concentration “episodes” . 

The plots suggest a number of questions that will be evaluated in this report. First, there 
is the previously mentioned behavior over time, which tends to involve clusters of sporadic 
episodes that show relatively high concentrations. These bursts tend to occur simultaneously 
at all locations, implying that there might be consistent dynamics over space as well as time. 
The simultaneous occurrence of the different episodes involving two different pesticides over 
the same interval of time would be of interest, either at the same or different locations. For 
example, chlorpyrifos and diazinon appear to occur together at the River Road location. 

The second database, collected in the U.S. Geological Survey of MacCoy et al (1995), 
involves two-day combined samples drawn from the San Joaquin River at Vernalis, over a 
1202-day time period extending from January, 1991 to April, 1994. This file contained about 

10,000 lines involving measurements on 23 pesticides. Figure 2 shows daily concentrations 
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Figure 1: Daily chlorpyrifos and diazinon concentrations at three locations on Orestimba 
Creek (May,l996-May,l997). A seven-day grab sample is available for chlorpyrifos at the 
River Road location. 

of two-day combined samples from the the pesticides diazinon, simazine, cyanazine and 
metolochlor; no chlorpyrifos was detected during this time period. 

The plots suggest that high concentration episodes of diazinon and simazine were roughly 
concurrent but other questions of interest involving coincident locations could not be evalu- 
ated using this data. A single sampling method was applied so that there is no opportunity 
for comparing sampling methods and the absence of chlorpyrifos detections means that look- 
ing at its co-ocurrence with diazinon would not be possible. We can, however, look at the 
parallel behavior of measurements over time within a given episode. 

The erratic behavior of the pesticide concentrations over time, as well as the high level 
of non-detections together suggest that exploratory data analysis will be an essential step 
for handling such data in the future. In Section 2, we discuss the use of transformations to 
scale down the large fluctuations and the application of various measures of correlation over 
time and space to indicate the kinds of models that might be applied to answer questions 
of interest for regulation and mitigation. Section 3 applies a dynamic regression model in 
space and time to suggest possible relations across those two dimensions. Section 4 uses the 

conclusions of Sections 2 and 3 to build a plausible model for common episodic signals over 
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Figure 2: Daily concentrations of diazinon, simazine, cyanazine and metolachlor on the San 
Joaquin River at Vernalis (January, 1991- April 1994, 1202 days, USGS) 

a given short time period. The model enables estimation of a common signal over space 
and its prediction limits. We use the distribution of the signal to give alower bound for the 
probability of simultaneously exceeding some given standard for a dpecified number of time 
periods. 

2. Exploratory Data Analysis 

This section summarizes a number of possible exploratory data analysis techniques that may 
suggest ways of reducing the data to a form that is more susceptible to statistical modeling. 
First, we discuss the use of transformations, which can help the data conform to standard 
statistical assumptions made in modeling such as stationarity, linearity and approximate 
normality. Another important diagnostic for this particular data will be various forms of 
correlation, namely, simple correlation for relating two series and a scatter diagram, which 
shows possible nonlinearities in the relation. Correlations over various lags, such as the 
autocorrelation and cross correlation functions are important for evaluating the time varying 
behavior of the series. All measures are discussed in Shumway and Stoffer (2000, Chapter 1) 
and can computed via standard packages or through the package ASTSA that is available in 
McQuarrie and Shumway (1994); this package and documentation can be downloaded from 
the web site in the reference. 

It is recognized that other statistical packages such as Minitab, SAS, SPSS and S-Plus 
will all have provisions for analyzing time series that are fully observed and not subject 
to detection limits, with S-Plus containing the most options and a modernized treatment. 
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However, the analysis undertaken here involves data that are sparse and subject to strong 
censoring, requiring that a pre-processing model-fitting procedure using Kalman filtering 
and smoothing be applied to produce a continuous record in time for input to standard 
packages. As a practical matter, the computations done in this report used MATLAB, 
which has superior computational and graphics capabilities for the purposes of reports and 
is satisfactory for manipulating large files. 

2.1 Estimation of Frequency Distributions; Transformations 
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Figure 3: Histograms for original and transformed chlorpyrifos and diazinon concentrations 
at three locations on Orestimba Creek (May,1996-May,1997, Dow ). 

When there are large excursions such as are apparent in Figures 1 and 2, transformations may 
be useful for stabilizing possible relations between series and for improving the conformance 
to possible normality assumptions. Another complicating factor is the presence of large 
numbers of non detections or zeros. Common kinds of transformations applied to data 
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Figure 4: Daily transformed (4th root) chlorpyrifos and diazinon concentrations at three 
locations on Orestimba Creek (May,1996-May,1997, Dow ). A seven-day grab sample is 
available for chlorpyrifos at the River Road location. 

TJt, t = 1,2, . . . ) n are the logarithmic (ln yt) and power transformations of the form 

zt = ytx - l 
x 

for 0 < X 5 1 (X = 0 gives the logarithmic). Censoring can be handled in the case where 
transformations are appropriate using results in Shumway et al (1989). The case where the 
yt are correlated is more difficult and it may be appropriate to treat the censored data as 
being at the detection limit when the detection limit is low, which is the situation for the 
DPR data. In the present case, for simplicity, we set the values below the detection limit 
at the average of zero and the detection limit. The high density of non-detections and the 
low quoted limits combine to make a detailed treatment such as is given in Shumway et al 
(1988) fl t d o imi e usefulness. Their treatment, which essentially replaces the values below the 
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detection limit with conditional expectations under the assumption of independence would 
not be appropriate in the correlated case considered here anyway. 

Frequency histograms for the original and the transformed chlorpyrifos and diazinon 
concentrations on Orestimba Creek are shown in Figure 3. In this case logarithmic, square 
root and fourth root transformations were tried and still produced skewed distributions. The 
fourth-root transformed histograms, shown in the bottom half of the table, seem to improve 
the situation somewhat if the censored values are ignored, although the distribution is still 
distinctly non-normal. A time plot of the transformed data is shown in Figure 4 and the 
high values seem to be toned down enough so that series might be regarded as smooth trend 
plus a relatively stationary process. Hence, one may regard the transformation as primarily 
useful for stabilizing the variances and improving the approximation to stationarity. 

Searching for a comparable transformation to apply to the USGS data did not lead to 
substantial improvements in the frequency histograms and it was decided that applying a 
transformation will not be helpful in this case. 

2.2 Correlation and Scatter Diagrams 

In order to evaluate the extent to which particular series, say ~~1, ~~2 are linearly related to 
one another, it is conventional to compute the instantaneous correlation and to examine the 
scatter diagrams, obtained by plotting yti on the horizontal scale and ytz on the vertical 
scale. 

The correlation matrix for the transformed (fourth root) chlopyrifos and diazinon mea- 
surements at the three Orestimba Creek locations can be computed and we note that this 
yields the values in Table 1 below, where the order is the chlorpyrifos at the three locations 
followed by diazinon at the same three locations. 

Table 1: Correlations for Chlorpyrifos at 3 Locations (orchl,orch2,orch3) and Diazinon 
(ordil,prdi2,ordi3). The locations are 1. Highway 33 Bridge, 2. Crow Creek Drain and 3. 

River Road. 

orchl orch2 orch3 ordil ordi2 ordi3 
orchl 1 .81 .84 .18 .31 .17 
orch2 .81 1 .74 .33 .49 .29 
orch3 .84 .74 1 .24 .36 .26 
ordil .18 .33 .24 1 .67 .79 
ordi2 .31 .49 .36 .67 1 .62 
ordi3 .17 .29 .26 .79 .62 1 

Hence, the upper left hand 3 x 3 table shows the location intercorrelation between chlor- 

pyrifos at the three locations. These seem to be uniformly high, indicating that the spatial 
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chlorpyrifos correlation is extremely high between the three locations. The lower right hand 
3 x 3 matrix shows the same high spatial correlation for the diazinon values. It should also 
be noted that statistical significance (.Ol) can be declared when any cross correlation exceeds 
2.33(1/m) = .12, so there will be significance for most of the relations. The upper right 
hand 3 matrix shows correlations between chlorpyrifos and diazinon between stations. The 
correlations between the two pesticides at the same station are higher, as one might expect. 

A feature that complicates the interpretation of the correlations will be the censored 
and missing data; the latter have been coded as zeros. This effect can be observed in the 
scatter diagram, shown in Figures 5 and 6, which show the censored values as bands parallel 
to the horizontal and vertical axes. The behavior of the scatter, excluding the bands of 
censored (coded as the average of zero and the detection limit) and missing data (coded as 
zeros), shows that linearity is still not an unreasonable assumption. The missing data can 
be interpolated using the state-space model proposed later. Censoring in the presence of 
transformations can be treated for the independent case as in Shumway et al (1989) but 
the high rate of censoring present and the low detection limits present in these files partially 
justifies replacing censored values by either zero or some value between zero and the detection 
limit in the correlated case. Concentrating attention on higher values of chlorpyrifos and 
diazinon shows that there will be some predictability of one from the other, even at different 
locations. 

At the San Joaquin River location, the correlation matrix given below in Table 2 shows 
strong associations only between diazinon and simazine. This file is mainly distinguished by 
the prevalence of non-detections and the correlation values are rather non-informative. 

Table 2: Correlations for 4 Herbicides on the San Joaquin River at Vernalis. 

Diazinon Simazine Cyanazine Metolachlor 
Diaz. 1 .59 -.05 -.05 
Sim. .59 1 -.07 .07 

Cyan. -.05 -.07 1 .06 
Metol. -.05 .07 .06 1 

2.3 Autocorrelation and Cross Correlation Functions 

Autocorrelation and cross correlation functions, denoted respectively by ACF and CCF in 
what follows, extend the notion of association between stations or chemicals to some lag h. 
That is, the ACF measures the degree to which ~~1 is correlated with its own past, say yt-h,rr 
where the latter term denotes the pesticide series measured h days in the past. A plot of 
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Figure 5: Scatter diagrams relating chlorpyrifos and diazinon levels between locations Ores- 
timba Creek Data. Here, orchl, orch2, orch3, ordil, ordi2 and ordi3 are as in Table 1. 
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Figure 6: Scatter diagrams relating pesticide levels on the San Joaquin River at Vernalis. 

this as a function of lag h displays graphically the correlation with all past values and is a 

measure of the predictability of the series from its own past. 
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Figure 7: ACF and PACF of daily transformed (4th root) chlorpyrifos and diazinon concen- 
trations at three locations on Orestimba Creek (May,1996-May,1997,‘Dow ). Note the peak 
at lag one in the PACF, indicating that a first difference or first order autoregressive model 
might apply. 

The CCF works the same for two series, correlating the first series yt,l with both past 
values, ~~-h,~, and future values yt+h,2 of a second pesticide series. Again, the predictability 
of the first series from the second (or the second from the first) at lag h is measured. The 
value of the cross correlation function at lag h = 0 generates the measures shown in the 
correlation matrix, previously given in Table 1 and Table 2. Note that the CCF is not 
symmetric about zero; one would not expect the same predictability in both directions. 

The partial autocorrelation function (PACF) correlates the series ytl with itself at lag 
h, like the ACF, except that yti and Yt-h,l are first adjusted for their regressions on the 
intervening values between the time points t - h and t. It is analogous to the conventional 
partial autocorrelation between two variables, conditioned on a third possible variable to 
which both variables may be related. It is desirable to condition out the third variable in 
order to look at the pure correlation between the two of interest. In time series analysis, 
when the series can be expressed best as an autoregressive process, i.e., a regression on its p 
past values plus error, the PACF will have values out to lag h = p and will be zero afterwards. 
This function is helpful in modeling the dynamic behavior of a single series over time. 
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Figure 8: Cross correlation functions relating chlorpyrifos and diazinon ,levels between loca- 
tions Orestimba Creek Data. 

Figure 7 shows the ACF and PACF for the Orestimba transformed chlorpyrifos and the 
untransformed diazinon levels. The ACF is dominated by slow decay, indicating either a 
nonstationary or long memory process. It shows that there is substantial correlation for 
about 30 days and smaller correlations thereafter. The PACF indicates that some sort of 
first-order model might suffice; in particular, the values near 1 for the for unit lag PACF’s 
in the chlorpyrifos series suggest that a model of the form 

Ytlti = l/t-i+ + eti 

might be taken for series i, where the eti are independent and identically distributed errors 
with zero means and variance 02. We use this diagnostic to argue that the random walk 
model above will be appropriate for modeling the unobserved signal. The cross correlation 
functions (CCF’s) are shown in Figure 8 and we note the large values at lag h = 0 mentioned 
before plus some peaks at h = f30 days that may indicate a 30-day period for the episodes. 

The ACF’s and PACF’s for the pesticides on the San Joaquin River, shown in Figure 9, 
reflect the fact that these are two-day samples so that two-day correlations will be expected, 
due to filling in zeros for the missing values. Hence, the first-order model, namely and au- 
toregressive model with one lag, may still be adequate. We note the fairly strong correlation 
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Figure 9: ACF and PACF of herbicide concentrations on the San Joaquin River at Vernalis. 
The zeros interspersed in the a-day samples introduce distortion in the measures. 

between simazine and diazinon, as before, with additional evidence of a 30-day peak. 

3. Dynamic Regression 

The exploratory data analysis of Section 2 suggests that there can be substantial correlations 
in both time and space that will be important for modeling the pesticide process. The 
detailed spatial structure will be difficult because the typical data will be measured at a 
limited number of stations, making any modeling that uses a general correlation model 
over space a difficult matter. A general class of models that seems to fit this situation 
is the dynamic regression situation that is represented by a class of state-space models 
that represent the observed data vector yt = (~~1, . . . , ytq)’ as a linear combination of an 
unobserved, i.e., unknown, signal vector xt = (~1,. , . , ZQ,)’ and an error vector ut. The 
resulting model for the observed series is 

Yt = Axt +vt, (1) 
where A is a q x p matrix that converts the unobserved signal xt into the observed data 

gt and vt are independent multivariate normal vectors with zero means and common, i.e. 
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Figure 10: Cross correlation functions relating pesticide levels on the San Joaquin River at 
Vernalis. 

identical, 4 x 4 covariance matrices R. The relation (1) is sometimes called the observation 
equation. The unobserved signal xt is assumed to evolve through time and space according 
to the standard regression relation 

xt = <Pxt-1 + wt (2) 

where @ is a p x p transition matrix that summarizes the space-time regresssion relation for 
the unobserved signal and wt are independent normal noise vectors with a common p x p 
covariance matrix Q. The relation (2) is called the state equation. For further details relating 
to the state-space model and its other applications, see Shumway and Stoffer (2000, Chapter 

4). 

In the current context, the state-space model provides a convenient way of modeling the 
spatial and time connections for pesticide concentrations such as those found in the two 
study areas of this report. For example, the transformed chlopyrifos concentrations at three 
locations, shown in Figure 4, might be modeled as 

for the i = 1,2,3 locations at time t by taking the observation matrix A in (1) as the 3 x 3 

Yti = xti + %i, 
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identity matrix. The state equation (2) might be of the form 

xti = hJ;t-1,l + 4%2xt-1,2 + &3xt-1,3 + wi 

for i = 1,2,3, giving a set of transitions in space and time governing the evolution of the 
pesticide concentrations through time and space at the three locations. 

There will be two problems of interest in treating the state-space model. The first is 
parameter estimation, including the transition matrix, a’, the observation covariance matrix, 
R, and the model covariance matrix, Q. A second problem will be estimating the unobserved 
process zt and its uncertainty, given values for the input parameters. This second problem 
is of less interest for the model given above but is of critical interest for the signal model 
given in the next section. The parameters are estimated by maximum likelihood whereas 
the unobserved process is estimated via the Kalman filters and smoothers (see Shumway and 
Stoffer, 2000, Chapter 4). Estimation of the parameters by maximum likelihood is covered in 
Sections 4.3 and 4.4, pp. 321-333. Software and documentation are available in McQuarrie 
and Shumway (1994) or in the MATLAB programs developed for this study. 

In order to illustrate the results, consider the chlorpyrifos levels from the three locations 
on Orestimba Creek. Applying the computational procedure, we obtain 

as the estimated transition matrix; the standard errors on on the order of .05. Substituting 
the significant values into the station by station model yields 

xt1 = . 83xt--l,l+ .llzt-1,s + wtl 

xt2 = .83xt+ + .lOxt-1,s + wt2 

xt3 = . 34xt+ + .65x+3 + wt3 

One interpretation of the above equations is that the current location value is most dependent 
on its value for the immediately preceding day for the Highway 33 and Crow Creek Drain 
series. These series also seem to depend weakly (coefficients are .lO) on the River Road series. 
The River Road series depends on its own past (coefficient -65) and on the past of the Highway 
33 Bridge series (coefficient .34). The other parameters in the system are the elements of 
the two covariance matrices R and Q. The standard deviations in the measurement matrix 
R are on the order of .02 whereas those in Q, representing model error on about .07. These 
two values enable a rough comparison to be made between model error (standard deviation 
.07) and observation error (standard deviation .02). Correlations between model errors, i.e. 
correlations relating the model errors wt were about .5. 
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Similar patterns predominate for the three locations measuring diazinon, where the tran- 
sition matrix is of the form 

tiq; iFig -fj. 

A slight difference is the additional communication that appears between the first and second 
locations, leading to the approximate model 

xt2 = .28xt-1,1 + .78xt-1,2 - .11xt-l,3 + wt2 

The standard deviations in the measurement matrix are about .03 whereas those in Q are 
about .17, implying that the model error is larger relative to the measurement error in this 
case. 

For the St. Joaquin River data, the transitions only involve past values of the same 
pesticides, measured for chlopyrifos and diazinon so that the transition matrix is estimated 

bY 

The simplified model becomes 
xtl = .87xt-1,1 + wtl 

xt2 = .97X&1,2 + Wt2 

and we see that the pesticides are basically disconnected. The form of the relation suggests 
that a random walk model might work separately for each pesticide. In the next section, 
we use this form for estimating a common signal rather than the second order AR model 
that might have been indicated by the PACF in Figure 9. It should be noted that for the 
two-day samples, intervening values will be automatically interpolated by the Kalman filters 
and smoothers. 

4. Signal Extraction 

The most interesting applications of the preceding will be to the problem of assessing the 
levels of pesticide concentration in a given area. For this to happen, we need a model 
that expresses observed series such as those given in Figures 1 and 2 in terms of a common 
signal. The data seem to be characterized by the occurrence of relatively short-lived episodic 
fluctuations that may exceed some prescribed regulatory standards. Problems that occur will 
created by irregular sampling and long sequences of observed values that are below detection 
limits. Procedures for merging irregularly observed and episodic fluctuations into a common 
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Figure 11: Observed transformed chlorpyrifos concentrations at three locations on the Ores- 
timba Creek for the last 64 days in Figures 1 and 4. Observed series on left and scatter 
diagram on the right relating observed to predicted for common signal model. 

signal and probability limits for that signal are of interest for determining if standards have 
been exceeded. 

The state-space model defines the signal Zt in terms of the equations given by (1) and 
(2). The signal is estimated by the Kalman smoothed values 

xy = JwQlYl, * - * ,%J, (3) 

i.e., the conditional expectation, given the observed data. The uncertainty of the smoothed 
values is expressed as the mean square covariance, say 

pt” = Jq($ - xt)($ - dlY1, - * * ,3/n), (4 

which is also the unconditional covariance. Under the assumption that the errors wt and wt 
are normally distributed, prediction intervals, at any given probability level, are available 
from (3) and (4). The filtering and smoothing equations for estimating the unobserved 
process are given as Properties 4.1-4.3 in Section 4.2, pp. 312-317. 

For pesticide data considered here, it seems sensible to hypothesize a simple model for 
the pesticide signal xt of the form 

xt = xt-1 + Wt, (5) 
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Figure 12: Observed transformed diazinon concentrations at three locations on the Orestimba 
Creek. Observed series on left and scatter diagram on the right relating observed to predicted 
for common signal model. 

which appears to be common to a given subset of observation series. This is the state equation 
corresponding to (2). The observed pesticide levels at a number of series, say i = 1, . . . , q 

containing the signal could be assumed to be of the form 

Yti = xt + a, (6) 

which corresponds to the observation equation (1). The observation covariance matrix is R 
and we take the model covariance a2 as given. This special form of the model means that a 
common signal xt is observed on each of the series and that the common signal satisfies the 
random walk assumption (5). 

The above model is in state-space form with A, the q x 1 vector of ones, where q is the 

number of series that contain the common signal. Note that R will be the q x q matrix of 
measurement error variances and covariances and @ = 1 will be the simple scalar one that 
generates (5). The signal variance will be just qll, since p = 1 in the general state space 
model (2). The first step in this procedure is estimating the unknown parameters R and 
qll and we accomplish this by maximum likelihood, using the EM algorithm (see Shumway 
and Stoffer, 2000). The final process is to produce the estimator (3) and its variance (4) for 

,. 
the signal, say XT and I’,“, evaluated at the maximum likelihood estimators R and &I. For 

this particular case, the normality assumptions yields approximate prediction limits of the 
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Figure 13: Estimated chlorpyrifos signal and 95 percent prediction limits for episode at end 
of data using all three locations. 

form x: f ,zP,” where the multiplier z is taken from the normal distribution to obtain the 
appropriate probability level. We will discuss this particular point further in Section 5. 

For the Orestimba Creek data, it is natural to assume that all three locations measure 
about the same signal and to investigate a model that assumes a common signal. Because 
of the high concentration of non-detections in the data, we took a typical episode occurring 
in the March to April, 1997 time interval as the base data and developed an estimator for 
the common signal and its variance under the special state-space formulation given by (6) 
and (5). This was repeated for both the chlorpyrifos (chl-ch3) and diazinon (dil-di3) data 
for the last 64 days of data. Table 3 gives the estimated parameters for the two cases and 
we note the small variances associated with both the measurement and model errors. 

Note that the diazinon observation variance at the second location is higher, confirming the 
visual difference in Figure 4 between the Crow Creek Drain and the other two locations. 
Figures 11 and 12 show the observed transformed (fourth root) chlorpyrifos and diazinon 
concentrations over the last 64 days and gives an indication of the fit of the single signal 
model. The right panels plot the observed vs the predicted values for the single signal 
model at all three locations and we see that there is fairly good agreement between the 
two. Figures 13 and 14 show the estimated common profile chlorpyrifos and diazinon signals 
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Figure 14: Estimated diazinon common signal and 95 percent prediction limits using all 
three locations. 

for the three locations, along with 95% prediction limits. We see that the limits are quite 
narrow, indicating good predictability and high confidence in the values for separate points. 
Not that the major peak in the two pesticide concentrations occurs at about the same time, 
i.e. 32 days into the record. There are two smaller peaks at the end of the chlorpyrifos and 
beginning of the diazinon signals that do not agree. 

A second question of interest is the relation between the more intensive daily averages and 
the seven day grab samples, which were both available only at the River Road location for 
chlopryrifos levels. Figure 15 shows both sets of measured concentrations and it is clear that 
the general trend of the two series agree although there were only 10 weekly samples available 
over the full 64 day period. The scatter diagram relating the profile signal estimates to the 

Table 3: Estimation of covariance parameters in matrices R and Q for the common signal 
model for the Orestimba Creek episode where ch4 denotes the weekly grab samples. 

Series r11 r12 r13 r22 r23 r33 Qll 

chl-ch3 .0068 -.0040 .0012 .0062 -.0058 .0080 -0051 
ch3-ch4 .0031 -.0012 .0052 .0075 
dil-di3 .0074 .OllO -.0072 .0993 -.0166 .0125 .0292 
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Figure 15: Observed transformed chlorpyrifos concentrations at River Road location com- 
pared to weekly grab samples at the same location. Observed series are on the left, showing 
zeros for missing values in the grab sample series. The scatter diagrams on the right relate 
the observed data on the horizontal scale to the predicted data on the vertical scale using 
the common signal model (9). 
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Figure 16: Estimated chlorpyrifos signal and 95 percent prediction limits using only River 
Road location with benchmark data. 

data is quite good for both the daily and the weekly values. Figure 16 shows the common 
signal, again obtained by Kalman smoothing, and we note that the prediction intervals are 
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Table 4: Estimation of covariance parameters in matrices R and & for the common signal 
model for the San Joaquin River episode. 

Series 1 ?I r12 r22 I 4111 
1 Diazinon-Simazine ( .0072 .OOOl .0134 1 .0059 ] 

slightly larger than would be obtained using all three locations, as in the upper panel of 
Figure 13. The shape is very similar, although the second peak now shows larger that the 
first peak, a result of the difference that seem to be unique to the third location (see figure 
11). The estimated parameters are shown in Table 3 and we note that the measurement 
errors are smaller, due to the common location, but the model error is larger, which will be 
due to one less data series for estimation. 
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Figure 17: Observed diazinon and simazine concentrations on the San Joaquin River at 
Vernalis for days 721-790 in Figure 2. Observed series on left and scatter diagram on the 
right relating observed to predicted for common signal model. 

For the USGS data from the San Joaquin River at Vernalis, there were only significant 
detections of the four herbicides shown in Figure 2 and the best possible episode of interest 
occurred in the diazinon and simazine series between days 721 and 790. A plot of this signal 
is shown in Figure 17 and we note that the profiles of the two herbicides are quite similar over 
this range. The episode would have occurred in in about January of 1993. The covariance 
parameters are given in Table 4 and we see that the measurement and model errors are 
roughly compatible with those from Orestimba Creek in Table 3. 

The common signal model shows scatter in figure 17 that is consistent with good pre- 
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Figure 18: Estimated diazinon-simazine common episode signal and 95 percent prediction 
limits using using both measurements. 

dictability. The estimated common signal and its’ 95% prediction limits are shown in Figure 
18 and here we note that the intervals are slightly wider than those done earlier. 

5. Implications for Regulation/Mitigation and Future Study 

The question remains as to how best to utilize the large files that are available. ,The fact 
that most sampling consists of daily samples with substantial numbers of non-detections 
suggests concentrating on the high concentration episodes and utilizing the prediction profiles 
developed in the preceding section. The strong correlation over time observed in most 
episodes suggests that signals can be estimated with reasonable accuracy from single series. 
The spatial correlation over locations along the same tributary in the Orestimba Creek study 
allowed more accurate profiles to be developed, assuming common signals at all locations. 
This also suggests a general regional contamination rather than one that is confined to a 
single location. The study has also shown how to combine irregularly observed samples into 
a daily profile signal, using the grab and daily coomposite samples in the Orestimba Creek 
study and using a mixture of l-day and 2-day samples in the San Joaquin River study. 

For deciding whether a given episode is in violation of a given regulatory standard, we 
suggest examining a profile signal and its prediction limits at a very high level of confidence, 
as measured by the prediction limits. As an example, consider Figure 19, which shows the 
estimated chlorpyrifos signal with 99.8% prediction limits. Interpreting this in a slightly 
different fashion we note that the lower dotted line is a lower bound on the concentration 
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Figure 19: Estimated chlorpyrifos signal and 99.8 percent prediction limits for episode at 
end of data using all three locations. 

level and there is only about one chance in a thousand that the true concentration is below 
that limit on any given day. 

Formally, let the allowable concentration be denoted by L and suppose that we define 
a violation as exceeding this threshold for m days in a row. Since the difference between 
the estimated signal and its prediction day t, say, zy - LG~, will be normally distributed with 
mean 0 and variance PT for any given sample, the probability of being in compliance on that 
day is approximately 

P{x&L}=l-@ = ) 
(Jp) t” 

(7) 

where (a(x) denotes the cumulative distribution function of the standard normal distribution. 
The probability of being in violation for for m days consecutively can be bounded below by 

P{&(xt > L)} 2 l- q1- @($g)), 
t=1 t 

(8) 
applying Bonferonni’s inequality. Suppose that the probability in (7) is .OOl and that the 
standard was exceeded for 10 days. Then, using (8), the probability that this would happen 
by chance is bounded below by 1 - lO(.OOl) = .99, i.e., there is at least a 99% chance that 
the standard was exceed on all 10 days. 
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There are a number of other factors such as rainfall, pesticide use, evapotranspiration and 
streamflow data which could provide additional predictive power for the underlying observed 
concentrations. Such covariates may be added to the state vector and we might consider the 
additional problem of estimating the scaling matrix A in the observation equation (1). The 
influence of fixed effects due to differences in stations or regions can also be estimated by 
adding a term that incorporates covariates in a vector, say it, to the observation equation 
so that 

yt = rzt + Axt + ut (9) 

becomes the new model and we may need to estimate both I? and A. Finally, the steps 
described in this report, namely, exploratory data analysis, dynamic regression and signal 
extraction can be applied to additional data sets to verify whether regulatory standards are 
being consistently violated in a given area during a specified period of time. 
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